Update on the NEETRAC Project

High Temperature Connector Committee Testing Support Phase II

Project No. 16-123

Principle Investigator: Joe Goldenburg
Co-PI: Dylan Summer
Project Reviewer: Nigel Hampton
Purpose

• Conduct testing on connectors used with HTLS conductors that will help the industry better understand their performance under tension
• This project will help support the ANSI C119.7 Committee on Connectors for use with High Temperature Conductor by providing information that will help them finalize a high temperature conductor test standard
• Share data (only) with the ANSI C119.7
Tasks

- Order / receive materials
- Finalize testing parameters with TAs and ANSI C119.7
- Design and build tension frames
- Current Cycle Test first loop
- Current Cycle Test second loop
- Current Cycle Test third loop
- Prepare closeout
- Write report
- Communicate with NEETRAC Technical Advisors
- Communicate with ANSI C119.7 Committee
Test Plan (General 1/2)

• There will be three tension conditions for each CCT loop.
• For all three conditions:
 – Samples consist of 1 AFL splice and 2 AFL dead-ends with Drake ACSS HS285.
 ▪ Thank you Gary Sibilant / EPRI for the conductor!
 ▪ Thank you Wayne Quesnel / AFL for the connectors!
 – Samples are approximately 30 ft. long (eye to eye).
 – Tension will be monitored continuously.
 – Control temperature is set to 250° C and continuously monitored.
Test Plan (General 2/2)

NEETRAC DC measurement:
• DC resistance (10 amp) every 10th cycle using wire equalizers, similar to the IEC method.
• We plot multiple currents and resulting voltages to reduce error.
Test Plan (General)

• There will be three tension conditions for each CCT loop.
• For all three conditions:
 – Samples consist of 1 splice and 2 dead-ends with Drake ACSS HS285.
 – Samples are approximately 30 ft. long (eye to eye).
 – Tension will be monitored continuously.
 – Control temperature is set to 250° C and continuously monitored.
 – DC resistance (10 amp) every 10th cycle using wire equalizers.
 – DC resistance every 50th cycle using new method developed at NEETRAC.
• After 500 cycle CCT, all samples will be separated for tensile testing.
Test Plan (Tension Conditions 1/3)

Condition 1

- Constant tension at 18% RBS
 - Continuous tension monitoring (1 per minute)
- Temperature cycles: temp and 250 °C for 500 cycles.
 - Continuous temperature monitoring (1 per minute)
- DC resistance (10 amp) every 10th cycle using wire equalizers.
- DC resistance every 50th cycle using new method developed at NEETRAC.
Test Plan (Tension Conditions 2/3)
Condition 2

- Tension will be raised to 25% RBS and held for 20 minutes after which time displacement will be fixed.
 - The tension will vary as the conductor heats and cools.
 - Continuous tension monitoring (1 per minute)
- Temperature cycles: room temp and 250 °C for 500 cycles.
 - Continuous temperature monitoring (1 per minute)
- DC resistance (10 amp) every 10th cycle using wire equalizers.
- DC resistance every 50th cycle using new method developed at NEETRAC.
Test Plan (Tension Conditions 3/3)
Condition 3

- Tension will be raised to 25% RBS and the displacement will be fixed immediately.
 - The tension will vary as the conductor heats and cools.
 - Tension will be resent to 25% RBS every 10th cycle.
 - Continuous tension monitoring (1 measurement per minute)
- Temperature cycles: room temp and 250 °C for 500 cycles.
 - Continuous temperature monitoring (1 per minute)
- DC resistance (10 amp) every 10th cycle using wire equalizers.
- DC resistance every 50th cycle using new method developed at NEETRAC.
Test Plan (Loop Diagram)
Tension Frames

- Modular construction
- Hydraulic system for fixed tension.
- Turnbuckles for fixed displacement.
Tension Frames

• Modular construction
• Hydraulic system for fixed tension.
• Turnbuckles for fixed displacement.
Schedule

• Depends on the status of an existing NEETRAC project.
• If the existing project continues, connector testing will start 2/1/18.
• If the other project does not continue, connector testing will start on 12/1/18.
• We will know the project status by 10/25/17.