From A to Z – Methods, Experiences, and Lessons Learned from the Installation of a Critical MV Power Cable System – Sub F

JC Hernandez-Mejia – GT NEETRAC – jean.Hernandez@neetrac.gatech.edu
Stacy Elledge – GT NEETRAC – stacy.elledge@neetrac.gatech.edu
Joshua Perkel – EPRI – jperkel@epri.com
Nigel Hampton – UL – nigel.hamptom@ul.com

Sept. 30th to Nov. 2nd, 2022 – Orlando, FL
Outline

- Background
- Critical Circuits
- From A to Z Methods – Highest Reliability & Case Study
 - Factory Acceptance Test – FAT
 - Site Acceptance Test – SAT
 - Site Overview
 - Installation Acceptance Test - IAT
 - Takeaways
 - Other important steps
- Summary
Background

- Utilities recognize the value of commissioning and condition-based asset management of their distribution cable circuits
- There is ready availability of voltage sources and well-established condition assessment criteria to undertake the condition-based maintenance
Critical Circuits

- The definition would likely change from utility to utility
- Specific cases may require unique parameters
- Circuits are considered critical when the risk and consequences of a failure severely impact the users, system, and/or third parties
- Drivers might include:
 - Critical infrastructure
 - Impact to the end customer
 - Critical infrastructure
 - SAIFI and SAIDI
 - Circuit Access (Location/Parts)
- Performance requirements remain constant across utilities perspectives, i.e. highest possible reliability
- To ensure the highest possible reliability, methods from cable design to manufacturing and installation are required
Q: How to get highest reliability?
A: By been involved from the beginning to end – A to Z

The A to Z process:

Utility Need

System Design

Cable Manufacture Accessory Selection

Handling

Installation Cable Joints Terms

Diagnostic Intervention Diverse/Complimentary Set of Diagnostic Technologies

FAT: Factory Acceptance Test
SAT: Site Acceptance Test
IAT: Installation Acceptance Test
MT: Maintenance Test

Reliable Service Life
Critical Circuit – Case Study

- Feeder Type
- Three-Phase
- Bay Crossing
- One Spare
- 8 Reels (6,000 ft)
- 4 Joints
- 8 Terminations
- 2 cables installed at the time
Factory Acceptance Testing – FAT

- Witness electrical routine test / review quality records for each reel by experienced representative on behalf of the end user
- FAT conducted in addition to standard Routine Test
- Consider augmenting standard test frequencies for critical cases
Site Acceptance Test - SAT

Ensure that the cable did not suffer any damage during handling and transportation

- Visual Inspection
- TDR
- VLF Tan δ
- PD with DAC
- PD VLF Monitored Withstand

New cables were OK after factory handling and transportation
Site Overview (1 of 3)
Site Overview (2 of 3)
Site Overview (3 of 3)
Installation Acceptance Test (IAT) - Stages

Stage 0 – First half of cable installed

- Near End
- Sea Bed
- Far End
- Cables
- Reels
- Barge
Installation Acceptance Test (IAT) - Stages

Stage 1 – Jointing on barge

Near End | Sea Bed | Far End

Joints
Installation Acceptance Test (IAT) - Stages

Stage 2 – Joints buried in seabed
Installation Acceptance Test (IAT) - Stages

Stage 3 – Installation complete
Installation Acceptance Test - Stage 1

Stage 1 - Joint Acceptance:
- Completed half crossing
- Joint assembly on barge
- Test terminations

<table>
<thead>
<tr>
<th>Test Sequence</th>
<th>Test</th>
<th>Test Voltages</th>
<th>Applicable Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TDR</td>
<td>N/A</td>
<td>IEEE 400</td>
</tr>
<tr>
<td>2</td>
<td>PD with DAC</td>
<td>0.5 (U_0), (U_0), 1.5 (U_0), 1.7 (U_0)</td>
<td>IEEE 400.4</td>
</tr>
<tr>
<td>3</td>
<td>MWT PD with VLF</td>
<td>30 min</td>
<td>IEEE 400.2</td>
</tr>
<tr>
<td>4</td>
<td>PD with DAC</td>
<td>0.5 (U_0), (U_0), 1.5 (U_0), 1.7 (U_0)</td>
<td>IEEE 400.4</td>
</tr>
</tbody>
</table>

IEEE PES ICC Fall 2022: From A to Z – Methods, Experiences, and Lessons Learned from the Installation of a Critical MV Power Cable System – Sub F
Installation Acceptance Test - Stage 2

Stage 2 - Joint Submergence:
- Completed half crossing
- Joint assembly laid on seabed
- Test terminations

<table>
<thead>
<tr>
<th>Test Sequence</th>
<th>Test</th>
<th>Test Voltages</th>
<th>Applicable Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TDR</td>
<td>N/A</td>
<td>IEEE 400</td>
</tr>
<tr>
<td>2</td>
<td>PD with DAC</td>
<td>0.5 (U_0), (U_0), 1.5 (U_0), 1.7 (U_0)</td>
<td>IEEE 400.4</td>
</tr>
<tr>
<td>3</td>
<td>MWT PD with VLF</td>
<td>60 min</td>
<td>IEEE 400.2</td>
</tr>
</tbody>
</table>
Installation Acceptance Test - Stage 3

Stage 3 - Final Commissioning:
- Completed full crossing
- Joint assembly buried
- Final pre-molded terminations

<table>
<thead>
<tr>
<th>Test Sequence</th>
<th>Test</th>
<th>Test Voltages</th>
<th>Applicable Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TDR</td>
<td>N/A</td>
<td>IEEE 400</td>
</tr>
<tr>
<td>2</td>
<td>PD with DAC</td>
<td>0.5 U₀, U₀, 1.5 U₀, 1.7 U₀</td>
<td>IEEE 400.4</td>
</tr>
<tr>
<td>3</td>
<td>VLF Tan δ</td>
<td>0.5 U₀, U₀, 1.5 U₀</td>
<td>IEEE 400.2</td>
</tr>
<tr>
<td>4</td>
<td>MWT PD with VLF</td>
<td>30 min</td>
<td>IEEE 400.2</td>
</tr>
</tbody>
</table>
Summary of Test Results by IAT Stage

<table>
<thead>
<tr>
<th>Feeder Phase</th>
<th>Stage 1 Joint Acceptance</th>
<th>Stage 2 Joint Submergence</th>
<th>Stage 3 Final Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable 1</td>
<td>✓</td>
<td>joint mechanical damage</td>
<td>Abandoned</td>
</tr>
</tbody>
</table>

§: Needed because Cable 1 was Abandoned
TDR for Cable 1 (Abandoned)

On Barge

After Trenching
Summary of Test Results by IAT Stage

<table>
<thead>
<tr>
<th>Feeder Phase</th>
<th>Stage 1 Joint Acceptance</th>
<th>Stage 2 Joint Submergence</th>
<th>Stage 3 Final Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable 1</td>
<td>✅</td>
<td>joint mechanical damage</td>
<td>Abandoned</td>
</tr>
<tr>
<td>Cable 2 Red Phase</td>
<td>✅ Rejoint§</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PD at Joint – replaced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable 3 Spare Phase</td>
<td>PD at Joint – replaced</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§: Needed because Cable 1 was Abandoned
IAT DAC PD Location Tests Results

Cable 2 (Red Phase)
Cable 2 (Red Phase) Joint Dissection

Insulation Shield Cutback Defects
Summary of Test Results by IAT Stage

<table>
<thead>
<tr>
<th>Feeder Phase</th>
<th>Stage 1 Joint Acceptance</th>
<th>Stage 2 Joint Submergence</th>
<th>Stage 3 Final Commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable 1</td>
<td>✓</td>
<td>joint mechanical damage</td>
<td>Abandoned</td>
</tr>
<tr>
<td>Cable 2 Red Phase</td>
<td>✓</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Rejoint§</td>
<td>PD at Joint – replaced</td>
<td>√</td>
</tr>
<tr>
<td>Cable 3 Spare Phase</td>
<td>✓</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>PD at Joint – replaced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable 4 Blue Phase</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable 5 White Phase</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§: Needed because Cable 1 was Abandoned
Other Important Steps
Cable Quality Assurance

- Perform QA checks on all shipping reels to ensure each reel meets design specifications
- Ensure at least spare reels are available should issues arise
Manufacturer Selection / Qualification to Bid

• Require qualification reports
• Require monthly CV qualification reports > 12 months
• Review experience of production of the design being purchased – has this design been manufactured before?
• Manufacturer may be audited considering quality and technical parameters
• Remember that a factory visit is not a full audit
Cable Design – Case Study

- EPR was the utility choice
- Only MV production plants can be used
- Limits the length to approximately 6,000 ft
- Jointing is required during the crossing
- Water blocked, fully encapsulation, and no armor
Accessory Selection

- Use only qualified joint designs (IEEE 404)
- Request qualification reports
- Use only qualified connectors – consider own experience
- Stick with joint designs and installation practices that utility crews are most familiar with
Summary

• Successfully conducted subsea commissioning program
• Commissioning integrated with the installation
• Designed to detect manufacturing and installation issues as soon as practical avoiding risk
• Multiple and complimentary diagnostic tests / technologies to improve accuracy
• Reduced repair/replacement costs
• The methods and processes can be used as guidance for other critical circuit applications